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ABSTRACT
Background: Hereditary hemochromatosis (HH) leads to iron load-
ing because of a disturbance in the negative-feedback mechanism
between dietary iron absorption and iron status. The management of
HH is achieved by repeated phlebotomies.
Objective: We investigated whether HH patients would benefit
from a diet with low iron intake and bioavailability.
Design: We performed a systematic review of studies that linked
iron bioavailability and status with dietary factors in subjects with
diagnosed HH. Studies on heterozygotes for the HFE mutation were
excluded.
Results: No prospective, randomized study was reported. Nine
studies that directly measured iron bioavailability from test meals
in HH patients have been described as well as 3 small, prospective,
longitudinal studies in HH patients. Eight cross-sectional studies
were identified that investigated the effect of dietary composition
on iron status. Calculations of iron bioavailability in HH were made
by extrapolating data on hepcidin concentrations and their associa-
tion with iron bioavailability. The potential reduction in the yearly
amount of blood to be phlebotomized when restricting dietary iron
absorbed was estimated in the 3 longitudinal studies and ranged
between 0.5 and 1.5 L. This amount would be dependent on in-
dividual disease penetrance as well as the dietary intervention.
Conclusions: Despite the limited quantitative evidence and the lack
of randomized, prospective trials, dietary interventions that modify
iron intake and bioavailability may affect iron accumulation in
HH patients. Although this measure may be welcome in patients
willing to contribute to their disease management, limited data
exist on the clinical and quality of life benefit. Am J Clin Nutr
doi: 10.3945/ajcn.112.048264.

INTRODUCTION

Hereditary hemochromatosis (HH) is a heterogeneous group of
disorders that is characterized by excessive iron bioavailability
and deposition in the body. It is caused by a limited ability to
downregulate iron absorption in the presence of sufficient iron
stores (1–4). The most prevalent form by far is HFE-related HH
and can be ascribed to homozygosity for the p.Cys282Tyr mu-
tation in the HFE gene (5). The mutation is estimated to affect
1:200–1:300 subjects of Northern European descent (6). The
clinical penetrance is lower and ranges between 2% and 38% in
men and 1% and 10% in women (5, 7, 8). The low penetrance
indicates that other genetic, epigenetic, and environmental fac-
tors play a role in the development of the disease (5). Although
cross-sectional studies have indicated that male sex, age, and

alcohol consumption are predictors of phenotypic expression,
other factors, such as diet, may also be involved (9).

Dietary heme and nonheme iron are absorbed by distinct
pathways (10–12); nonheme iron has to be reduced by dietary
components or by duodenal cytochrome b before it can be taken
up by dimetal transporter 1. In contrast, heme iron is absorbed
intact (13) and is more independent from effects of the food
matrix (10). Enterocyte iron is released to the blood via the cel-
lular iron exporter ferroportin on the basolateral membrane. The
regulation of this transport is reduced by the hepatocyte-derived
peptide hormone hepcidin, which binds to ferroportin, leads to its
internalization and degradation (11, 14, 15). In patients with HFE
hemochromatosis, the duodenal expression of dimetal transporter
1, duodenal cytochrome b (16), and ferroportin (17, 18) is in-
creased and consistent with the gene-expression profile encoun-
tered in iron-deficient duodenal enterocytes (19). Furthermore,
lower serum hepcidin concentrations relative to ferritin concen-
trations have been reported in HH patients compared with those
of control subjects (20) .

Dietary iron intake and bioavailability are determinants of iron
status in the general population (21, 22). However, little is known
about potential diet-related effects on iron accumulation in HH.
Dietary recommendations for subjects with HFE HH are typi-
cally limited to general recommendations to follow a healthy
diversified diet (see Supplemental Table 1 under “Supplemental
data” in the online issue). An expert consensus is that patients
should avoid iron-containing food supplements and alcohol.
Patients diagnosed with HH are treated with a schedule of
phlebotomies, which is an approach that has been shown to be
safe and effective (23, 24). It is a commonly encountered attitude
that patients wish active involvement in their own treatment, and
a significant number of HH patients request more-detailed dietary
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advice (Dutch Hemochromatosis Society, personal communica-
tion, May 2011).

We aimed to review the literature on iron bioavailability in
subjects with HFE-related p.Cys282Tyr HH as well as idiopathic
HH and to estimate whether and to which extent dietary iron
restriction and modulation of dietary iron bioavailability could
support treatment in the management and prevention of HH.

METHODS

Literature search

Online literature databases the Web of Science (Thomson
Reuters; http://thomsonreuters.com/web-of-science/) and PubMed
(National Centre for Biotechnology Information, US National
Library of Medicine; www.pubmed.gov) were searched for ar-
ticles that investigated iron bioavailability and iron status in
subjects with HH. Studies were reviewed that included HFE
homozygous p.Cys282Tyr subjects. Earlier studies on subjects
with idiopathic HH conducted before the discovery of the HFE
gene (25) were included in the review because homozygosity for
the p.Cys282Tyr mutation in the HFE gene explains the great
majority of these cases (25). Original research, including both
observational and prospective studies, was included. Relevant-
outcome measures were direct measurements of iron bio-
availability, hepcidin concentrations, iron status markers, and
the quantity of iron removed by phlebotomy under varying
dietary regimens. The primary search was conducted between
January and July 2011. An update search was conducted from
May to July 2012. Relevant articles published thereafter but
before the end of 2012 were also included. The literature search
was conducted by 2 persons separately. The following search
terms were used: iron status, hereditary hemochromatosis, iron
overload, idiopathic, iron bioavailability, iron absorption, iron
status, ferritin, hepcidin, diet, inhibitors, enhancers, homozy-
gotes, and HFE gene. All original studies that reported the effect
of dietary and lifestyle factors on iron status in human hemo-
chromatosis patients were included. Studies and outcomes that
focused exclusively on heterozygotes for the HFE gene were
excluded. Articles that investigated the fecal excretion of ra-
dioisotopic tracers were not included in the review. Studies and
data were not pooled into a meta-analysis but analyzed quali-
tatively and summarized in tables. No formal assessment of
publication or reporting bias was performed. The study and
protocol are also available under PROSPERO (International
prospective registry of systematic reviews; http://www.crd.york.
ac.uk/prospero/; registration no. CRD42012003501).

Calculation of iron absorption and iron balance in HH

Zimmermann et al (26) previously established the regression
curve between hepcidin concentrations and iron absorption from
a standard test meal in healthy individuals as follows:

Iron absorption ð%Þ ¼ 2 3:9656 ln½hepcidin ðnmol=LÞ�
þ 13:238

ð1Þ

This regression curvewas obtained by concomitantly assessing
hepcidin concentration and iron bioavailability from an iso-
topically labeled test meal in 89 subjects with either a serum

ferritin (SF) concentration ,25 mg/L or who were iron suffi-
cient (SF concentration .40 mg/L). These inclusion criteria
were chosen to cover a wide range of iron statuses. With the
assumptions that hepcidin is the primary determinant of iron
absorption both in subjects with and without HH, we used this
equation to estimate iron absorption in p.Cys282Tyr homozy-
gotes by imputing average serum and plasma hepcidin con-
centrations at different stages of phlebotomy (20). In both of
these studies (20, 26), the hepcidin concentration was mea-
sured at the Department of Laboratory Medicine, Radboud
University Nijmegen Medical Centre, Nijmegen, Netherlands
(Hepcidinanalysis.com) by using weak cation exchange time-
of-flight mass spectrometry. The synthetic analog hepcidin-24
of hepcidin-25 was used as an internal standard for quantifi-
cation (27, 28).

The effect of diet-related factors on iron balance was cal-
culated for some of the studies under the following assump-
tions: 1) the hemoglobin concentration was 150 g/L, 2) the
iron content in hemoglobin was 3.47 mg Fe/g hemoglobin,
and 3) the phlebotomy session (one unit of blood) was equal to
450 mL blood.

RESULTS

A total of 64 full-text articles were assessed for eligibility (see
Supplemental Figure 1 under “Supplemental data” in the online
issue). Of these articles, 20 studies were excluded because they
were dedicated to heterozygotes for the p.Cys282Tyr mutation,
13 studies were clinical observations without a dietary compo-
nent, and 7 studies investigated other conditions nonrelated to
diet in HH. Furthermore, 3 studies investigated the fecal ex-
cretion of isotopic labels. A total of 21 studies were included in
the final qualitative assessment. Nine studies that directly mea-
sured iron bioavailability from test meals (Table 1), 3 small,
nonrandomized longitudinal, prospective studies (Table 2), and
8 cross-sectional studies, which were cited in 9 publications
(Table 3), were found. No randomized prospective study has
been reported to date.

Iron absorption studies in HH patients

Of the 9 radio or stable isotope studies shown in the literature,
only the most-recent studies included an explicit characterization
of the HFE gene in participating subjects (34, 35). Iron ab-
sorption from isotopically labeled iron dosages and test meals
was repeatedly reported to be higher in subjects with idiopathic
HH than in healthy control individuals (2, 3, 29, 31, 32, 35).

Since body iron stores are the most important determinant of
iron absorption in the general population (10), it may confound
data from absorption studies if not taken into account. Walters
et al (2) showed that iron absorption from a chicken soup meal
was 21.9% in patients with HH compared with 12.6% in the
control group, regardless of iron status. In addition, the authors
compared regression lines that linked iron absorption to serum
ferritin concentrations and showed a smaller decrease in iron
absorption with increasing iron stores in the HH group. In a
secondary regression analysis, a nearly similar iron absorption
of 27% and 26% in HH patients at SF values of 20 and 200 mg/L
was estimated, respectively, whereas in healthy control subjects,
absorption was decreased from 26% to 2.5%, which corresponded
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to a 10-fold higher iron bioavailability in HH patients at high SF
concentrations (2). Other studies in subjects with low SF (,25
mg/L) have reported iron absorption from nonheme iron to be
36% in subjects with HH compared with a range between 5.8%
and 19% in control subjects (31). While further investigating the
relation between SF and nonheme iron absorption from a test
meal, Lynch et al (3) reported a significant slope of 20,936 (log
Fe absorption, %)/log (SF, mg/liter) on a logarithmic scale in
normal subjects for nonheme iron absorption compared with
a significant slope of 20.405 (log Fe absorption, %)/log (SF,
mgliter/L) in patients with HH. At a standardized SF concentra-
tion of 100 mg/L, these values corresponded with a nonheme iron
bioavailability of w2% and w18% in control subjects and HH
patients, respectively (data not shown). In contrast to this and
unlike in healthy volunteers, heme iron bioavailability was un-
related to iron stores (no significant correlation) in patients with
HH (3). These studies indicated abnormally high dietary iron
absorption, for both heme and nonheme iron, in subjects with HH
and a weaker regulatory feedback mechanism on iron absorption
at high SF concentrations, particularly for heme iron in HH
subjects.

It is well known that iron bioavailability from supplemental
iron consumed without any food, such as reference doses ad-
ministered in isotopic studies (46), is higher than when consumed
together with a meal. Part of the variation in iron absorption
observed in bioavailability studies can be explained by the
presence or the nature of the food matrix because enhancement or
the inhibition of iron absorption in healthy subjects can occur
despite low iron status or physiologic upregulation (21, 47).
Similar effects are plausible in subjects with HH, but the mag-
nitude of the effect may differ from that in subjects without HH.
Various studies have investigated this relation. One study in-
vestigated iron absorption that compared iron-deficient anemic
subjects and patients with HH. All had SF concentrations ,25
mg/L. Subjects received 3 types of meals as follows: 1) a whole-
maize porridge rich in absorption inhibitors, 2) a gravy that
contained heme iron, and 3) a dose of iron ascorbate solution
without any food matrix. HH patients absorbed significantly
more iron from all nonheme iron–containing meals, whereas the
absorption of heme iron was similar in HH subjects (37.1%) and
iron-deficient anemic subjects (31.6%) (31). The solution that
contained ferrous ascorbate given without any additional food
was w50% more bioavailable in HH than control subjects (31).
In another study conducted in idiopathic HH patients with low
iron status (mean SF concentration: 25 mg/L), iron absorption
was 20% from a maize porridge with ascorbic acid and 72%
from an iron ascorbate solution, respectively, which indicated
a strong inhibiting effect of the food matrix on iron bio-
availability in iron-depleted HH subjects (33). Subjects with
diagnosed genetic HH who regularly underwent a phlebotomy
(mean SF concentration: 122 mg/L) and drank black tea with
a mixed meal that consisted of rice, potatoes, beef, and spinach
were reported to absorb only 6.9% of the iron content in the
meal compared with an absorption of 22.1% when the same
meal was given without tea to the same subjects. This study
confirmed that polyphenols from black tea decrease iron bio-
availability in patients with HH (34), similar to findings in
normal subjects (48, 49). Overall, these studies indicated that
certain diet-related components can have an inhibiting effect on
iron absorption in HH patients.

Longitudinal studies

Although isotopic studies of iron absorption allow the quanti-
fication of food-matrix and physiologic effects on bioavailability,
a longitudinal observation allows the long-term estimation of iron
balance (Table 2). The iron-accumulation rate was reported to be
highly variable in idiopathic HH patients (1.2–241 mg SF/L), with
a mean yearly rise of 99 mg SF/L (50). However, not all p.
Cys282Tyr homozygotes appear to show increased iron accumula-
tion compared with wild-type counterparts (51, 52), which explains,
in part, the high variation in iron accumulation over time and the
low clinical penetrance of homozygosity of the p.Cys282Tyr
mutation (52). Kaltwasser et al (29) showed that patients with
clinically proven HH who regularly underwent a maintenance
phlebotomy before the observation period, had a mean increase
of 276.9 mg SF/L in 1 y (29). It can be calculated that a mean
increase of 100 mg SF/L would correspond tow790 mg body Fe/y
or 1.5 L blood to be phlebotomized (assuming that 1 mg SF/L is
w8 mg body Fe) (53, 54).

In a cohort study conducted in Sweden in which HH subjects
who underwent a phlebotomy acted as their own control subjects,
the amount of iron absorbed was estimated to be 5.4 mg Fe/d,
which corresponded to an iron bioavailability of 35% (estimated
intake: 15.4 mg/d) (36). Subjects were maintained depleted with
a mean SF concentration of 16 mg/L and a percentage of transferrin
saturation of 34% during the course of phlebotomy. During the 1-y
study, iron fortification of common flour in the country was
discontinued, and the authors of the study estimated that this
decreased iron intake to 11.3 mg/d, which resulted in 4.8 mg
absorbed Fe/d without fortification (bioavailability estimated at
42%). This difference in iron intake resulted in a net difference
of 0.65 mg absorbed Fe/d compared with in the reference pe-
riod without iron fortification of flour. The described difference
in absorbed iron would correspond to 240 mg Fe/y or w0.5 L
blood to be phlebotomized (36) (data not shown in Table 2).
Although the Fe bioavailability assessed in this study seemed
to be consistent with data obtained from stable-isotope studies
in subjects with similarly low iron status (SF concentration: 16
mg/L), a possible limitation in this study was the accuracy of
the assessment of iron intake in the cohort subjects involved in
this trial as well as the lack of a true control group (subjects without
HH) during the study period.

Another nonrandomized study was conducted in HH patients
that investigated the effect of consuming 250 mL black tea with
each meal 3 times/d to inhibit iron absorption during a period of
52 wk (34). The control group consumed other drinks ad libitum
and were free to choose their preferred beverage or not to drink;
subjects were nonrandomly allocated to the 2 different arms of
the study for compliance-related reasons. Both groups had sig-
nificantly higher SF values after 1 y. At the end of the study, the
amount of iron accumulated was assessed by phlebotomizing all
subjects until an SF concentration of 50 mg/L was reached. The
amount of iron removed was w50% higher in the control group
than in the tea-drinking group. However, this difference was not
significantly different between groups with means 6 SEMs of
256 6 173 and 827 6 105 mg Fe absorbed, respectively (34).

Antacids are known to decrease iron bioavailability by low-
ering the amount of iron in solution in gastric and intestinal
contents without interacting with iron-uptake mechanisms at the
cellular level. With antacids, less iron would be solubilized from
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food (48), and a smaller amount of dietary iron would be
available for uptake. In a study in patients homozygous for the p.
Cys282Tyr mutation, the use of proton pump inhibitors reduced
gastric acid secretion and decreased the need for maintenance
phlebotomy from 2.5 to 0.5 L/y (37). This effect would corre-
spond to a decrease in iron removal of 1000 mg/y. However, the
magnitude of the effect is difficult to generalize because of the
small sample size included in this study (n = 7) and requires
confirmation.

Stochastic modeling (Monte Carlo) was used in a longitudinal
study to estimate iron accumulation in patients with HH (55). To
construct the model, demographic and dietary intake data were
taken from NHANES III, whereas estimates of iron bio-
availability were taken from the studies by Lynch et al (3) and
Bezwoda et al (31). For this analysis, 3 dietary modifications
were tested by the model by setting iron intake to 200% and 100%
of the Recommended Dietary Allowance, respectively, and
defortification of iron-fortified flour. Estimated reductions in iron
accumulation were more evident in men and were more pro-
nounced with a stricter dietary change (such as capping iron
intake to 100% of the Recommended Dietary Allowance).
However, the constructed model was strongly sensitive to esti-
mates from the regression line that related iron bioavailability and
iron stores. The authors concluded that lifelong dietary habits
may affect the rate of iron accumulation in HH and that the model
assumed that all HH patients would have similar degrees of
impairment in absorption control (55).

Cross-sectional studies that investigated associations

In a cross-sectional study in the United Kingdom, heme iron
intake and p.Cys282Tyr homozygosity interacted significantly in
increasing SF concentrations (39). The study indicated that heme
iron intake had a 2 times greater effect on SF in p.Cys282Tyr
homozygotes than in other groups studied (heterozygotes and
wild-type individuals), whereas for nonheme iron, no difference
was reported (Table 3). Similar results were reported in a study
done in the Netherlands, where a significant association between
heme iron intake and SF was shown in all study groups, as well as
a higher SF in the combined group of p.Cys282Tyr homozygotes
and compound heterozygotes (p.Cys282Tyr/His63Asp). How-
ever, despite higher SF with increasing heme iron intake, no
significant intake-genotype interaction on SF was reported in the
study (41). Both of these studies used a validated food-frequency
questionnaire to assess dietary intakes in the study population.
Other cross-sectional studies that assessed the intake of animal-
source foods did not identify an association between iron status
and heme iron intake in p.Cys282Tyr homozygotes (42, 43, 45).
In a study on first-degree relatives of p.Cys282Tyr homozygotes,
the relative contribution of lifestyle and genetic factors to the
presence of iron overload (defined as the percentage of transferrin
saturation .50% and SF concentrations .300 mg/L in men and
.200 mg/L in women) was investigated with logistic regression
(42). Genotype explained 42% of the variation in the model,
whereas sex explained 6% of the variation in the model. Life-
style factors were used to compute a propensity score and ex-
plained an additional 6% of the variation. These factors were
being a carrier of p.His63Asp, a history of liver disease, current
or past blood donorship, fresh-fruit consumption, alcohol con-
sumption, and regular aspirin intake. Low fruit consumption

(,7 portions/wk) was identified as a significant factor that
contributed to an iron overload, together with a high intake of
alcohol (.5 units/wk) (42). Similarly, high noncitrus fruit in-
take, low meat intake, and low alcohol intake were associated
with lower concentrations of SF in a population not restricted to
p.Cys282Tyr homozygotes only (43). In the same study, a sig-
nificant interaction between alcohol intake and genotype in
women was reported (43).

This finding was also indicated in a study by Scotet et al (38) in
p.Cys282Tyr homozygotes, in which significant associations
between higher iron indexes with increased alcohol intake were
reported (38). In an additional study, first-degree relatives of p.
Cys282Tyr homozygotes had a significant higher ferritin OR
(95% CI) of 1.61 (1.01, 2.56) if they were identified as high meat
consumers (.200 g/d) (44). In contrast to this finding, Gordeuk
et al (45) did not find an association between nonheme and heme
iron intakes and serum ferritin concentrations in a population of
newly identified middle-aged p.Cys282Tyr homozygotes in
whom iron intake was estimated by using a food-frequency
questionnaire (45).

Calculation of iron absorption in HH

In the past, the relation between SF and iron bioavailability has
been considered a potential diagnostic tool for early disease
diagnosis (32). Because serum hepcidin concentrations relative to
ferritin concentrations are significantly lower in HH subjects
(20), the serum hepcidin:ferritin ratio has also been suggested as
a useful diagnostic tool for the early detection of p.Cys282Tyr
homozygotes at risk of developing iron overload as well as for
monitoring phlebotomy treatment (14, 56). The relation between
iron bioavailability and hepcidin concentrations has been
assessed in normal subjects (26, 57). With the assumption that
hepcidin regulates iron bioavailability similarly in HFE p.
Cys282Tyr HH subjects and healthy control subjects, it can be
estimated that iron absorption from a standardized meal (rice
with vegetable sauce) ranges between 12.2% and 15.3% and
from 6.6% to 12.4% in HH subjects and healthy control subjects,
respectively, at normal SF concentrations (32–162 mg/L). In
contrast, in HH subjects with elevated ferritin concentrations
(330–1045 mg/L), food iron absorption would range between
8.6% and 11.3% (Figure 1).

DISCUSSION

Studies that have measured iron absorption in HH subjects
indicated that the iron bioavailability in clinically penetrant HH
patients 1) is generally 2–10-folds higher than in wild-type in-
dividuals depending on the standardized iron status at which the
groups were compared; 2) is high for iron stores, particularly for
heme iron, 3) is influenced by the food matrix, and 4) may
stabilize at a range of 15–35% dietary iron bioavailability at
high iron stores (.300 mg SF/L) and, therefore, is similar to iron
absorption in non-HH iron-deficient subjects.

It has been shown that duodenal enterocytes in HH patients
have an expression of iron transport proteins elevated for their
iron-store concentration (18), and repeated phlebotomies induce
an increased expression, which is likely responsible for increased
mucosal transfer (18). The absorption studies reviewed (3, 31)
suggested that the choice of dietary iron source (heme or nonheme
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iron) can affect the iron absorption and balance in HH patients.
In addition, the modulation of the amount of dietary iron intake
(36) or iron bioavailability (34) may decrease the rate of iron
accumulation in patients with HH. It has also been shown that
the presence of a food matrix per se (31) influences iron bio-
availability in HH patients. The factors that would elicit an effect
on iron bioavailability are similar to enhancers and inhibitors of
iron absorption for non-HH subjects (58). The prospective,
longitudinal studies discussed in this review also suggested an
effect by dietary modulation on iron balance in HH patients (34,
36). However, the overall (nonsignificant) effect reported in the
study that investigated the effect of tea on long-term body iron
status may have been a result of other dietary and lifestyle
factors associated with frequent tea drinking because subjects
were not randomly assigned to treatment. Furthermore, the latter
study had a small sample size (n = 19) (34). Although the results
seen may not have been solely because of tea drinking, the
effect size suggested a decrease in absorbed iron over the
course of 1 y of w400 mg, one-third in iron accumulation (34),

and would correspond to a yearly decrease in phlebotomy need
of 0.7 L blood.

Despite this suggestive evidence, limited direct evidence was
shown to support the hypothesis that dietary modulation can
influence iron accumulation in HH patients in a clinically relevant
manner. This was a result of several important limitations.

First, the evidence from cross-sectional studies was difficult to
interpret because of the potential confounding effect of chronic
subclinical inflammation (ie, diabetes, the metabolic syndrome,
and cardiovascular disease), which influences iron-status
markers, which was likely to confound the relation between
dietary iron intake and iron status. In one of the cross-sectional
studies (42), low fruit intake was associated with higher risk of
having an iron-overload phenotype in first-degree relatives of HH
patients. This result was somewhat surprising because an op-
posite effect may be expected because of the vitamin C content of
fruit. However, it is possible that fruit intake was a proxy for the
dietary quality and a healthier lifestyle. This limitation may also
apply to studies that investigate the bioavailability of iron in
relation with SF, in which SF may not always reflect iron stores
in the presence of subclinical inflammation.

A second limitation was that fully penetrant HH is a rare
disease, which makes it difficult to conduct large prospective
studies with iron status as the primary outcome. Therefore,
studies have thus far been mostly conducted in small groups of
subjects (n = 16–18), which has limited the statistical power
of inference (59, 60). New approaches to study design such as
the use of population pharmacokinetics to describe changes in
iron status in longitudinal studies may allow studies to be
conducted with smaller populations of HH patients and more
closely describe the development of iron status over time fol-
lowing specific dietary or lifestyle patterns (61). With the use of
the quantity of iron removed by a phlebotomy as an outcome
measure may be promising because it would be less affected by
short-term changes in iron-status markers because of subclinical
inflammation.

Third, as noted by Tao et al (55), the calculation of the SF to
iron bioavailability regression equation assumes that all subjects
with clinically penetrant HH have a similar impairment of iron
absorption regulation, which may not be the case (51) because
a small proportion of homozygotes develop iron overload, and
iron stores may plateau before reaching the critical level (52). A
range of genetic and environmental factors, including dietary
factors (15), may influence iron intake and bodily iron distri-
bution and, thus, may influence disease penetrance. The pre-
diction of the bioavailability in HH patients by using the serum
hepcidin concentration may provide indications about the rate of
iron loading in individual subjects at any given time but would
require reference data that link the hepcidin concentration to iron
bioavailability in clinically confirmed HH subjects. Studies that
explicitly link genetic mutations and environmental and epige-
netic factors to iron bioavailability in clinically confirmed HH
subjects may provide additional leads.

Fourth, in only one of the studies that directly assessed iron
bioavailability, the HFE genotype was assessed. The remaining
studies in idiopathic HH patients, although conducted in clini-
cally confirmed HH patients, may not have been entirely repre-
sentative of the population of HFE-related HH patients and
because isotopic studies have typically been conducted in a lim-
ited number of subjects. However, the likelihood of including

FIGURE 1. IQRs (lines) and medians (dots) of serum ferritin, hepcidin,
and estimated iron bioavailability in HH patients with high or normal ferritin
values compared with those of their WT counterparts. The estimated iron
bioavailability was based on the extrapolation of hepcidin concentrations in
HH patients as published by van Dijk et al (20) with the following regression
formula: iron absorption (%) = 23.9656 ln[hepcidin (nmol/L)] + 13.238
(26), relating hepcidin concentrations with iron bioavailability in healthy
subjects. HH, hereditary hemochromatosis; WT, wild-type.
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a subject with a rare genotype other than homozygosity for the p.
Cys282Tyr mutation in the HFE gene or in other HH-related
genes is low because of the high prevalence of p.Cys282Tyr
homozygosity in clinically affected HH patients (25).

In HH patients with low to normal iron status who consume
a typical Western diet that contains 16–18 mg/d Fe (62), a dietary
iron absorption of 20–40% for heme and nonheme iron com-
bined as shown in the studied literature would imply a long-term
positive iron balance of w3–7 mg/d. It is very unlikely that such
a positive balance could be reduced to zero with an exclusive
dietary intervention. However, a dietary modulation may be
a useful accessory measure to reduce the rapid reaccumulation
of iron in clinically diagnosed HH patients who are undergoing
a phlebotomy, especially in the maintenance phase. Depletion
through a phlebotomy of HH patients until a very low SF con-
centration (50 mg/L) is reached (63) will upregulate the iron
absorption in HH patients. Therefore, the inhibition or reduction
of absorbed iron by dietary modulation could help to avoid
exacerbating the excess release of iron into the circulation,
which results in a vicious circle of more-frequent maintenance
phlebotomies in HH patients (20, 64)

In conclusion, dietary modification may provide an auxiliary
measure to inhibit iron accumulation and reduce the number of
required phlebotomies in clinically confirmed HH patients. This
result could increase the patient’s active involvement in treat-
ment and, as such, may be beneficial for prospective disease
outcomes (65). However, additional longitudinal research would
be required to formulate and test an effective dietary strategy for
this patient group and quantify the clinical benefit in the number
of phlebotomies avoided as well as patient wellbeing. Such
a dietary strategy would comprise lowering dietary iron intake
and reducing iron bioavailability while maintaining adequate
intakes of other essential nutrients that are typically consumed as
part of an iron-rich diet (ie, zinc, vitamin C, and vitamin B-12).
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